Serre's reduction of linear partial differential systems with holonomic adjoints
نویسندگان
چکیده
Given a linear functional system (e.g., ordinary/partial differential system, differential time-delay system, difference system), Serre’s reduction aims at finding an equivalent linear functional system which contains fewer equations and fewer unknowns. The purpose of this paper is to study Serre’s reduction of underdetermined linear systems of partial differential equations with either polynomial, formal power series or analytic coefficients and with holonomic adjoints in the sense of algebraic analysis. We prove that these linear partial differential systems can be defined by means of a single linear partial differential equation. In the case of polynomial coefficients, we give an algorithm to compute the corresponding equation. Key-words: Serre’s reduction, underdetermined linear systems of partial differential equations, holonomic D-modules, constructive module theory, mathematical systems theory, symbolic computation. ∗ University of Limoges; CNRS; XLIM UMR 6172, DMI, 123 avenue Albert Thomas, 87060 Limoges Cedex, France, [email protected]. † INRIA Saclay Ile-de-France, DISCO project, CNRS-SUPELEC, 3 rue Joliot Curie, 91192 Gif-sur-Yvette Cedex, France, [email protected] in ria -0 05 45 65 8, v er si on 2 14 D ec 2 01 0 Réduction de Serre des systèmes linéaires d’équations aux dérivées partielles dont les adjoints sont holonomes Résumé : Etant donné un système fonctionnel linéaire (e.g., système d’équations différentielles ordinaires, système d’équations aux dérivées partielles, système d’équations différentielles à retard, système d’équations aux différences), la réduction de Serre a pour but de trouver un système fonctionnel linéaire équivalent contenant moins d’équations et d’inconnues. L’objectif de ce papier est l’étude de la réduction de Serre des systèmes linéaires sous-déterminés d’équations aux dérivées partielles à coefficients polynomiaux, séries formelles ou séries localement convergentes, dont les adjoints sont holonomes au sens de l’analyse algébrique. Nous prouvons que de tels systèmes peuvent être définis par une seule équation aux dérivées partielles. Dans le cas des coefficients polynomiaux, nous donnons un algorithme permettant de calculer l’équation correspondante. Mots-clés : Réduction de Serre, systèmes linéaires sous-déterminés d’équations aux dérivées partielles, D-modules holonomes, théorie constructive des modules, théorie mathématique des systèmes, calcul formel. in ria -0 05 45 65 8, v er si on 2 14 D ec 2 01 0 Serre’s reduction of linear partial differential systems with holonomic adjoints 3
منابع مشابه
Serre’s reduction of linear partial differential systems based on holonomy
Given a linear functional system (e.g., an ordinary/partial differential system), Serre’s reduction aims at finding an equivalent linear functional system which contains fewer equations and fewer unknowns. The purpose of this paper is to study Serre’s reduction of underdetermined linear systems of partial differential equations with analytic coefficients whose formal adjoints are holonomic in t...
متن کاملPolynomial and Rational Solutions of Holonomic Systems
Polynomial and rational solutions for linear ordinary differential equations can be obtained by algorithmic methods. For instance, the maple package DEtools provides efficient functions polysols and ratsols to find polynomial and rational solutions for a given linear ordinary differential equation with rational function coefficients. A natural analogue of the notion of linear ordinary different...
متن کاملExact and numerical solutions of linear and non-linear systems of fractional partial differential equations
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
متن کاملSerre's Reduction of Linear Functional Systems
Serre’s reduction aims at reducing the number of unknowns and equations of a linear functional system (e.g., system of partial differential equations, system of differential time-delay equations, system of difference equations). Finding an equivalent representation of a linear functional system containing fewer equations and fewer unknowns generally simplifies the study of its structural proper...
متن کاملAlgorithms for integrals of holonomic functions over domains defined by polynomial inequalities
A holonomic function is a differentiable or generalized function which satisfies a holonomic system of linear partial or ordinary differential equations with polynomial coefficients. The main purpose of this paper is to present algorithms for computing a holonomic system for the definite integral of a holonomic function with parameters over a domain defined by polynomial inequalities. If the in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Symb. Comput.
دوره 47 شماره
صفحات -
تاریخ انتشار 2012